Virtual Laboratory Wiki

This wiki's URL has been migrated to the primary fandom.com domain.Read more here

ПОДРОБНЕЕ

Virtual Laboratory Wiki
Advertisement
Электрон
Символ
Масса 9,1093826(16)×10−31кг,

0,51099892±0,00000004МэВ

Античастица позитрон
Классы фермион, лептон
Квантовые числа
Электрический заряд −1
Спин 1/2
Изотопический спин 0
Барионное число 0
Странность 0
Очарование 0
Другие свойства
Время жизни ∞ (не менее 4,6×1026 лет)
Схема распада
Кварковый состав

Электро́н — стабильная элементарная частица, одна из основных структурных единиц вещества. Из электронов состоят электронные оболочки атомов всех веществ. Движение электронов определяет многие электрические явления, такие как электрический ток в металлах и вакууме.

Заряд электрона неделим и равен −1,60217653(14)·10−19 Кл (или 4,803×10−10 ед.СГСЭ в системе СГС) (опыт Милликена). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса покоя электрона равна 9,1093826(16)·10−31 кг.

Согласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабых, электромагнитных и гравитационных взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальную. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном.

Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы покоя электрона.

Этимология и история открытия

Название «электрон» происходит от греческого слова ήλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен[1] Джорджем Джонстоном Стоуни в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника. (см. Открытие электрона)

Использование

В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.

Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею; это является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках очень мала(~0.1-1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим - ток во всей цепи устанавливается практически мгновенно.

Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (кинескопами). Электронный микроскоп также использует возможность электронов собираться в пучок и подчиняться законам электронной оптики. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах (которые и сейчас продолжают ограниченно использоваться), где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями.

Электрон как квазичастица

Если электрон находится в периодическом потенциале, его движение рассмаривается как движение квазичастицы. Его состояния описываются квазиволновым вектором. Основной динамической характеристикой в случае квадратичного закона дисперсии является эффективная масса, которая может значительно отличаться от массы свободного электрона и в общем случае является тензором.


Квазичастицы
Биэкситон | Дырка | Куперовская пара | Магнон | Орбитон | Плазмон | Поляритон | Полярон | Фазон | Флуктуон | Фонон | Экситон

Электрон и Вселенная

Известно[2], что из каждых 100 нуклонов во Вселенной, 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра)[3]. С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет ~1080.

Примечания

  1. Stoney, G. Johnstone, «Of the 'Electron,' or Atom of Electricity». Philosophical Magazine. Series 5, Volume 38, p. 418—420 October 1894.
  2. Richard N. Boyd Big bang nucleosynthesis // Nuclear Physics A. — 2001. — Т. 693. — № 1-2. — С. 249-257.
  3. ASTROPHYSICAL CONSTANTS AND PARAMETERS

Литература

  • Все известные свойства электрона систематизированы в обзоре Particle Data Group [1].

Фундаментальные частицы - легкие элементарные частицы

Править
Кварки: u-кварк · d-кварк · s-кварк · c-кварк · b-кварк · t-кварк
Лептоны: Электрон · Мюон · Тау-лептон · Электронное нейтрино · Мюонное нейтрино · Тау-нейтрино
Античастицы
Антикварки: u-антикварк · d-антикварк · s-антикварк · c-антикварк · b-антикварк · t-антикварк
Антилептоны: Позитрон · Антимюон · Анти тау-лептон · Электронное антинейтрино · Мюонное антинейтрино · Анти тау-нейтрино
Калибровочные бозоны: Фотоны · W и Z бозоны · Глюоны
До сих пор не обнаружены: Бозон Хиггса · Гравитон · Другие гипотетические частицы



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Электрон. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement