Virtual Laboratory Wiki
Advertisement

Центр масс (центр ине́рции, барице́нтр) в механике — это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Определение

Положение центра масс (центра инерции) в классической механике определяется следующим образом:

где

 — радиус-вектор центра масс,
 — радиус-вектор i-й точки системы,
 — масса i-й точки.

Для случая непрерывного распределения масс:

где:

M — суммарная масса системы,
V — объём,
 — плотность.

Центр масс, таким образом, характерезует распределение массы по телу или системе частиц.

Центры масс однородных фигур

  • У отрезка — середина.
  • У многоугольников (как сплошных плоских фигур, так и каркасов):
    • У параллелограмма — пересечение диагоналей.
    • У треугольника — точка пересечения медиан (центроид).
  • У правильного многоугольника — центр поворотной симметрии.

В механике

Понятие центра масс широко используется в физике.

Движение твёрдого тела можно рассматривать как суперпозицию поступательного движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центр масс в релятивистской механике

В случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:

где

 — радиус-вектор центра масс,
 — радиус-вектор i-й частицы системы,
 — энергия i-й частицы (E=Епок+Ek)

Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лившица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (center-of-mass). Оба термина эквивалентны.

Центр тяжести

Центр масс тела не следует путать с центром тяжести. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. Например, в системе, состоящей из 2 одинаковых масс, соединённых несгибаемым стержнем и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от гравитационного поля g), и, вообще говоря, даже расположен вне стержня. В постоянном параллельном (однородном) гравитационном поле центр тяжести всегда совпадает с центром масс. Поэтому на практике эти два центра почти совпадают (так как гравитационное поле в некосмических задачах может считаться постоянным в объёме тела).

По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статистике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (так как реального гравитационного поля нет и не имеет смысла учёт его неоднородности). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

См. также



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Центр масс. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement