где — тензор Риччи, получающийся из тензора кривизны пространства-времени посредством свёртки его по паре индексов, R — скалярная кривизна, то есть свёрнутый тензор Риччи, — метрический тензор, — космологическая постоянная, а представляет собой тензор энергии-импульса материи, ( — число пи, c — скорость света в вакууме, G — гравитационная постоянная Ньютона). Так как все входящие в уравнения тензоры симметричны, то в четырёхмерном пространстве-времени эти уравнения равносильны 4·(4+1)/2=10 скалярным уравнениям.
Основной особенностью уравнений Эйнштейна является их нелинейность, приводящая к невозможности использования при их решении принципа суперпозиции.