Virtual Laboratory Wiki
Advertisement

Трансляцией называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК). Трансляция является финальной стадией реализации генетической информации.

Механизм трансляции

Файл:Translation overall scheme.jpg

Общая схема трансляции.
Инициация. 1. Узнавание стартового кодона (AUG), сопровождается присоединением тРНК аминоацилированной метионином (М) и сборкой рибосомы из большой и малой субъединиц.
Элонгация. 2. Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено). 3. Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи. 4. Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК. 5. Аминоацилирование высвободившейся молекулы тРНК соответствующей ей аминоацил-тРНК-синтетазой. 6. Присоединение следующей молекулы аминоацил-тРНК, аналогично стадии (2). 7. Движение рибосомы по молекуле мРНК до стоп-кодона (в данном случае UAG).
Терминация. Узнавание рибосомой стоп-кодона сопровождается (8) отсоединением новосинтезированного белка и в некоторых случаях (9) диссоциацией рибосомы.

Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих аминокислот и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК рибосома распознает кодон за кодоном и синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.

Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энегро-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон ACC, а к этой тРНК будет присоединяться только аминокислота глицин).

Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

Процесс трансляции разделяют на

  • инициацию — узнавание рибосомой стартового кодона и начало синтеза.
  • элонгацию — собственно синтез белка.
  • терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

Рамка считывания

Поскольку каждый кодон содержит три нуклеотида, один и тот же генетический текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов), то есть в трех разных рамках считывания. За некоторыми интересными исключениями, значимой является информация закодированная только в одной рамке считывания. По этой причине крайне важным для синтеза белка рибосомой является её правильное позиционирование на стартовом AUG-кодоне — инициация трансляции.

Инициация трансляции

Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.

Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, сокращённо IF; эукариотические инициаторные факторы обозначают eIF, от англ. eukaryotes).

Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на на любых участках мРНК.

У эукариот существуют два механизма нахождения рибосомой стартового AUG. Наиболее распространён, так называемый сканирующий механизм, при котором рибосома, двигаясь вдоль молекулы мРНК от её 5'-конца «сканирует» один кодон за другим, пока не наткнётся на инициаторный AUG. Для привлечения рибосомы к 5'-концу мРНК требуется специальная структура, кэп — 7-метилгуанин, прикреплённый к 5'-концевому нуклеотиду мРНК.

Второй механизм эукариотической инициации трансляции не требует наличия кэп-структуры и позволяет инициировать трансляцию с внутреннего участка мРНК, называется IRES-зависимым механизмом. IRES (от англ. Internal Ribosomal Entry Site, участок внутренней посадки рибосомы) — участок мРНК, обладающий выраженной вторичной стуктурой, позволяющей ему направлять рибосомы на стартовый AUG. По IRES-зависимому механизму инициируется синтез лишь на небольшой части клеточных мРНК, а также на РНК некоторых вирусов.

Файл:Initiation translation Procaryotes.jpg

Схема инициации трансляции у прокариот.
Начальная стадия предусматривает связывание малой рибосомной субъединицы (30S) с мРНК. Это может происходить двумя способами: либо сначала к мРНК присоединяется комплекс, содержащий рибосомную субчастицу (1), а затем к нему привлекается тРНК в комплексе с IF2 и ГТФ (2), либо 30S субъединица изначально связывается с тРНК, а уже потом садится на мРНК (3). К образовавшемуся комплексу приходит большая (50S) рибосомная субъединица (4), инициаторные факторы отсоединяются от 30S субчастицы, что сопровождается гидролизом ГТФ белком IF2 (5), и собранная рибосома начинает элонгировать цепь (6). В правом нижнем углу дана схема инициаторного участка прокариотической мРНК. Отмечены 5' и 3' концы молекулы. RBS — сайт связывания рибосомы, SD — последовательность Шайн-Дальгарно, AUG — инициаторный кодон.

Механизм инициации трансляции у прокариот

Малая рибосомная субъединица (30S) прокариот, если она не вовлечена в данный момент в трансляцию, существует в комплексе с инициаторными факторами IF1, IF3, и, в некоторых случаях, IF2. Рассмотрим основные функции этих белков:

  • IF3, связанный с 30S-субъединицей, предотвращает ассоциацию с большой (50S) субъединицей рибосомы, тем самым сохраняя ее свободное состояние до связывания с матричной РНК. Этот белок также принимает участие в связывании мРНК и тРНК, а также IF2.
  • IF2 взаимодействует с тРНК, а также обладает способностью расщеплять ГТФ (ГуанинТриФосфат).
  • IF1 является, по-видимому, не обязательным фактором (у некоторых видов он отсутствует) повышающим сродство малой субчастицы к IF2 и IF3.

Комплекс 30S субчастицы с инициаторными факторами способен узнавать специальные последовательности мРНК, так называемые участки связывания рибосомы (англ. RBS — ribosomt-binding site). Эти участки содержат, во-первых, инициаторный AUG, и, во-вторых, специальную последовательность Шайн-Дальгарно с которой комплементарно связывается рибосомная 16S РНК. Последовательность Шайн-Дальгарно служит для того, чтобы отличать инициаторный AUG от внутренних кодонов, кодирующих метионин. После того, как 30S-субъединица связалась с мРНК к ней привлекается инициаторная аминоацил-тРНК и IF2, если они еще не были включены в комплекс. Затем присоединяется 50S-субчастица, происходит гидролиз ГТФ и диссоциация инициаторных факторов. Собранная рибосома начинает синтезировать полипептидную цепь.

Кэп-зависимый механизм инициации трансляции у эукариот

При помощи этого механизма транслируется подавляющее число эукариотических мРНК. Белки, принимающие участие в процессах инициации трансляции у эукариот называют eIF’s (англ. eukaryotic Initiation Factors, эукариотические факторы инициации). Помимо инициаторных факторов eIF1, eIF2 и eIF3, связывающихся с малой рибосомной субъединицей (40S), и по своим функциям приблизительно аналогичным соответствующим белкам прокариот, у эукариот появляется еще две группы факторов инициации: семейство факторов, связывающих мРНК — eIF4, и семейство факторов, связывающихся с большой (60S) субъединицей рибосомы, eIF5. Перечислим эти основные инициаторные факторы:

  • eIF4A — РНК хеликаза, фермент, расплетающий вторичную структуру мРНК для того чтобы рибосома могла по ней двигаться.
  • eIF4B — привлекает фактор eIF4A к молекуле мРНК.
  • eIF4E — связывает кэп, 7-метилгуанин, расположенный на 5'-конце молекулы мРНК.
  • eIF4G — нужен для организации компонентов, принимающих участие в инициации трансляции, в единый комплекс. Содержит сайты связывания eIF4B, eIF4E, рибосомы.
  • eIF5 — нужен для привлечения большой субъединицы рибосомы.

На первом этапе инициации трансляции малая субъединица рибосомы в комплексе с инициаторными факторами eIF4G, eIF4B, eIF4E и инициаторной тРНК присоединяется к 5'-концу мРНК за счёт способности eIF4E связывать кэп-структуру и белка eIF3 — мРНК. Затем белок eIF4B привлекает хеликазу eIF4A, и та начинает расплетать мРНК по направлению к 3'-концу, что сопровождается затратами энергии в форме молекул АТФ. За счёт работы этого белка, 40S субчастица освобождается от белков eIF4G и eIF4E, и в комплексе с оставшимися факторами инициации двигается по мРНК до инициаторного AUG-кодона, где происходит диссоциация оставшихся факторов инициации и привлечение 60S-субъединицы рибосомы при помощи eIF5, после чего начинается синтез полипептидной цепи.

Элонгация

Файл:RNA-binding sites in ribosome.jpg

Схема РНК-связывающих участков рибосомы. Буквами обозначены участки связывания тРНК. А — аминоацил-тРНК-связывающий участок, Р — пептидил-тРНК-связывающий участок, Е — участок отсоединения тРНК от рибосомы (англ. exit).

В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит заряженную тРНК в А (аминоацил)-сайт рибосомы. После формирования пептидной связи, что катализируется рРНК, и переноса связанной с тРНК пептида в из Р-сайта в А-сайт второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует перемещение рибосомы на один триплет. Таким образом петидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК в Р-сайте — в Е-сайте. Цикл элонгации завершается, когда новая тРНК с антикодоном, подходящим к кодону в А-сайте доставлена EF1a (или EF-Tu).

Терминация

Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонам

Примечания

  • 5'-колпачок

Литература



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Трансляция (биология). Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement