Термодинамика |
---|
![]() |
Статья является частью одноименной серии. |
Начала термодинамики |
Уравнение состояния |
Термодинамические величины |
Термодинамические потенциалы |
Термодинамические циклы |
Фазовые переходы |
править |
Термодинамика (от греч. Therme — тепло + Dynamis — сила) — раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. В отдельные дисциплины выделились химическая термодинамика, изучающая физико-химические превращения, связанные с выделением или поглощением тепла, а также теплотехника.
В теоретической физике наряду с феноменологической термодинамикой, изучающей феноменологию тепловых процессов, выделяют термодинамику статистическую, которая была создана для механического обоснования термодинамики и была одним из первых разделов статистической физики.
Разделы термодинамики[]
Классическая термодинамика состоит из разделов:
- Главные законы термодинамики (иногда также называемые началами).
- Уравнения состояния и прочие свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
- Равновесные процессы с простыми системами, термодинамические циклы.
- Неравновесные процессы и закон неубывания энтропии.
- Термодинамические фазы и фазовые переходы.
Кроме этого, современная термодинамика включает также следующие направления:
- строгая математическая формулировка термодинамики на основе выпуклого анализа;
- иерархическая термодинамика;
- Супрамолекулярная термодинамика;
- неэкстенсивная термодинамика;
- применение термодинамики к нестандартным системам (см. термодинамика чёрных дыр).
Физический смысл термодинамики[]
Необходимость термодинамики[]
Термодинамика исторически возникла как эмпирическая наука об основных способах преобразования внутренней энергии тел для совершения механической работы. Однако в процессе своего развития термодинамика проникла во все разделы физики, где возможно ввести понятие «температура» и позволила теоретически предсказать многие явления задолго до появления строгой теории этих явлений.
Законы термодинамики[]
Термодинамика основывается на трёх законах, которые сформулированы на основе экспериментальных данных и поэтому могут быть приняты как постулаты.
* 1-й закон термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как , где есть полный дифференциал внутренней энергии системы, а и есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно. Нужно учитывать, что и нельзя считать дифференциалами в обычном смысле этого понятия, поскольку эти величины существенно зависят от типа процесса, в результате которого состояние системы изменилось.
* 2-й закон термодинамики: Второй закон термодинамики исключает возможность создания вечного двигателя второго рода. Имеется несколько различных, но в тоже время эквивалентных формулировок этого закона. 1 — Постулат Клаузиуса. Процесс, при котором не происходит других изменений, кроме передачи теплоты от горячего тела к холодному, является необратимым, то есть теплота не может перейти от холодного тела к горячему без каких либо других изменений в системе. Это явление называют рассеиванием или дисперсией энергии. 2 — Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.
* 3-й закон термодинамики: Теорема Нернста: Энтропия любой системы при абсолютном нуле температуры всегда может быть принята равной нулю.
* Основной закон (нулевое начало) термодинамики:
Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, которого она при фиксированных внешних условиях с течением времени самопроизвольно достигает.
Парадоксы[]
См. также[]
- Первое начало термодинамики
- Второе начало термодинамики
- Третье начало термодинамики
- Нулевое начало термодинамики
- Термодинамическое равновесие
Литература[]
- Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
- Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
- Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
- Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. М.: Едиториал УРСС, 2003. 120 с.
- Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
- Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
- Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
- Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы). — М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
- Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
- Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). — М.: Изд-во ЛКИ, 2007. — 312 с.
- Квасников И. А. Термодинамика и статистическая физика. Т.1: Теория равновесных систем: Термодинамика. Том.1. Изд. 2, испр. и доп. М.: УРСС, 2002. 240 с.
- Кубо Р. Термодинамика. М.: Мир, 1970
- Пригожин И. Введение в термодинамику необратимых процессов М.: Изд-во иностр. лит-ры, 1960. 160 c.
- Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 2002. 464 с.
Gladyshev Georgi P. The Principle of Substance Stability is Applicable to all Levels of Organization of Living Matter // Int. J. Mol. Sci.- 2006.- 7.- P. 98-110.http://www.mdpi.org/ijms/papers/i7030098.pdf
Гладышев Г.П. Термодинамика и макрокинетика природных иерархических процессов. М.: Наука, 1988. – 287 с.; Gladyshev G.P. Thermodynamics and Macrokinetics of Natural Hierarchical Processes . M.: Nauka Publ., 1988.
- Gladyshev Georgi P. Thermodynamics Theory of the Evolution of Living Beings.- Commack, New York: Nova Science Publishers, Inc.- 1997.- 142 P.
- Гладышев Г.П. Супрамолекулярная термодинамика – Ключ к осознанию явления жизни. Издание второе – М – Ижевск. ISBN: 59397-21982. 2003.
- Стратонович Р. Л. Нелинейная неравновесная термодинамика. М.: Наука, 1985. 480 с.
- Сычев В. В. Дифференциальные уравнения термодинамики. Изд. 2-е. М.: Высшая школа, 1991. 224 с.
- Шредингер Э. Статистическая термодинамика Ижевск: РХД, 1999. 96 с.
Другие ссылки[]
- Термодинамика необратимых процессов (Сайт о химии)
Термодинамика иерархических систем http://www.xumuk.ru/encyklopedia/2/4371.html
Разделы физики |
---|
Экспериментальная физика | Теоретическая физика |
Механика | Специальная теория относительности | Общая теория относительности | Космология | Молекулярная физика | Термодинамика | Статистическая физика | Физическая кинетика | Электродинамика | Оптика | Акустика | Физика плазмы | Физика конденсированного состояния | Атомная физика | Квантовая физика | Квантовая механика | Квантовая теория поля | Ядерная физика | Физика элементарных частиц | Теория колебаний | Нелинейная динамика | Метрология | Астрофизика | Геофизика | Биофизика | Радиофизика | Материаловедение | Физика атмосферы | Химическая физика | Физическая химия | Математическая физика |