Virtual Laboratory Wiki
Advertisement

Распределение Ферми — Дирака как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается

Статистика Ферми — Дирака в статистической физике — квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с полуцелым спином, подчиняющихся принципу запрета Паули, то есть, одно и то же квантовое состояние может занимать не более одной частицы); определяет статистическое распределение фермионов по энергетическим уровням системы, находящейся в термодинамическом равновесии; предложена в 1926 г. итальянским физиком Энрико Ферми и одновременно английским физиком Полем Дираком, который выяснил её квантово-механический смысл; позволяет найти вероятность, с которой фермион занимает данный энергетический уровень.

Работы по статистике Ферми — Дирака были опубликованы в 1926, а в 1927 она была применена Арнольдом Зоммерфельдом к электронам в металле.

В статистике Ферми — Дирака среднее число частиц в состоянии с энергией есть

где:

— среднее число частиц в состоянии i,
— энергия состояния i,
кратность вырождения состояния i (число состояний с энергией ),
химический потенциал (который равен энергии Ферми при абсолютном нуле температуры),
kпостоянная Больцмана,
T — абсолютная температура.

В (идеальном) ферми-газе в пределе низких температур . В этом случае (полагая уровни энергии невырожденными ), функция распределения частиц называется функцией Ферми:

Распределение Ферми — Дирака как функция температуры. Заполнение уровней с энергиями растёт с увеличением температуры

Применение

Статистики Ферми — Дирака и Бозе — Эйнштейна применяются в том случае, когда необходимо учитывать квантовые эффекты, когда частицы обладают «неразличимостью». Квантовые эффекты проявляются тогда, когда концентрация частиц (N/V) ≥ (где — квантовая концентрация). Квантовая концентрация — это концентрация, при которой расстояние между частицами соразмерно с длиной волны де Бройля, то есть когда волновые функции частиц соприкасаются, но не перекрываются. Квантовая концентрация зависит от температуры. Статистика Ферми — Дирака (Ф—Д) применяется к фермионам (частицы, на которые действует принцип Паули), статистика Бозе — Эйнштейна (Б—Э) применяется к бозонам. Оба этих распределения становятся распределением Максвелла — Больцмана при высоких температурах и низких концентрациях.

Распределением Максвелла — Больцмана часто описываются классические «различимые» частицы. Другими словами, конфигурация частицы A в состоянии 1 и частицы B в состоянии 2 отличается от конфигурации частицы B в состоянии 1 и частицы A в состоянии 2. Когда эта идея была проработана полностью, оказалось, что распределение частиц по энергетическим состояниям приводит к нефизическим результатам для энтропии, что известно, как парадокс Гиббса. Эта проблема исчезла, когда стал ясен тот факт, что все частицы неразличимы. И Ф—Д, и Б—Э приближаются к статистике Максвелла— Больцмана в пределе высоких температур и низких плотностей. Статистика Максвелла — Больцмана хорошо описывает поведение газов. Ф-Д часто используется для описания электронов в твердых телах, на ней, к примеру, базируются основные положения теории полупроводников в частности и электроники в целом.

Вывод распределения

Распределение Ферми — Дирака как функция от ε. Высокоэнергетические состояния имеют меньшую вероятность. Или, низкоэнергитические состояния более вероятны

Рассмотрим состояние частицы в системе, состоящей из множества частиц. Энергия такой частицы равна . Например, если наша система — это некий квантовый газ в «ящике», то подобное состояние может описываться частной волновой функцией. Известно, что для большого канонического ансамбля, функция распределения имеет вид

где

— энергия состояния s,
— число частиц, находящихся в состоянии s,
химический потенциал,
s — это индекс, пробегающий все возмножные микросостояния системы.

В данном контексте, система имеет фиксированные состояния. Итак, если какое либо состояние занято n частицами, то энергия системы — . Если состояние свободно, то энергия имеет значение 0. Будем рассматривать равновесные одночастичные состояния как резервуар. После того, как система и резервуар займут одно и тоже физическое пространство, начинает происходить обмен частицами между двумя состояниями (фактически, это явление мы и исследуем). Отсюда становится ясно, почему используется описанная выше функция распределения, которая, через химический потенциал, учитывает поток частиц между системой и резервуаром.

Для фермионов, каждое состояние может быть либо занято одной частицей, либо свободно. Поэтому, наша система имеет два множества: занятых (разумеется, одной частицей) и незанятых состояний, обозначающихся and соответственно. Видно, что , , и , . Поэтому функция распределения принимает вид:

.

Для большого канонического ансамбля, вероятность того, что система находится в микросостоянии вычисляется по формуле

.

Наличие состояния, занятого частицей, означает, что система находится в микросостоянии , вероятность которого

.

называется распределением Ферми — Дирака. Для фиксированной температуры T, есть вероятность того, что состояние с энергией ε будет занято фермионом. Обратите внимание, что является убывающей функцией от ε. Это соответствует нашим ожиданиям: высокоэнергетические состояния занимаются с меньшей вероятностью.

Обратите внимание, что энергетический уровень ε имеет вырождение . Теперь можно произвести простую модификацию:

.

Это число — ожидаемое число частиц, в суммарном состоянии с энергией ε.

Для всех температур T, . Это означает, что состояния с энергией μ всегда будут иметь одинаковую вероятность быть заполнеными или свободными.

В пределе , становится ступенчатой функцией (см. первый график). Все состояния с энергией меньше химического потенциала μ будут заняты с вероятностью 1. Состояния с энергией выше химического потенциала μ будут свободны. Химический потенциал при нулевой температуре — энергия Ферми, обозначается , то есть

.

Влияние температуры

Необходимо заметить, что химический потенциал зависит от температуры. Однако для систем, имеющих температуру ниже температуры Ферми , что часто используется, как аппроксимация . В реальности же:

Другой вывод

См. также


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Статистика Ферми — Дирака. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement