Virtual Laboratory Wiki
Advertisement
Руби́дий / Rubidium (Rb)
Атомный номер 37
Внешний вид простого вещества Мягкий, серебристо-белый металл
Свойства атома
Атомная масса
(молярная масса)
85,4678 а. е. м. (г/моль)
Радиус атома 248 пм
Энергия ионизации
(первый электрон)
402,8 (4,17) кДж/моль (эВ)
Электронная конфигурация [Kr] 5s1
Химические свойства
Ковалентный радиус 216 пм
Радиус иона (+1e)147 пм
Электроотрицательность
(по Полингу)
0,82
Электродный потенциал 0
Степени окисления 1
Термодинамические свойства простого вещества
Плотность 1,532 г/см³
Удельная теплоёмкость 0,360 Дж/(K·моль)
Теплопроводность 58,2 Вт/(м·K)
Температура плавления 312,2 K
Теплота плавления 2,20 кДж/моль
Температура кипения 961 K
Теплота испарения 75,8 кДж/моль
Молярный объём 55,9 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированая
Период решётки 5,590 Å
Отношение c/a n/a
Температура Дебая n/a K


Rb 37
85,4678
5s1
Рубидий
Файл:Rb,37.jpg

Образец рубидия

История

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по цвету наиболее сильных линий спектра.

Происхождение названия

Название дано по цвету наиболее характерных красных линий спектра (от лат. rubidus — красный, тёмно-красный).

Получение

Большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов RbAl(SO4)2·12H2O, KAl(SO4)2·12H2O, CsAl(SO4)2·12H2O. Смесь разделяют многократной перекристаллизацией. Рубидий также выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9]. Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозема из нефелина.

Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.

Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к уведичению добычи лития, а, следовательно, и рубидия. Именно поэтому соединения рубидия стали более доступными.

Мировые ресурсы рубидия

Распространение рубидия в природе и его промышленное извлечение. Содержание рубидия в земной коре составляет 7,8·10–3%. Это примерно столько же, как для никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий – типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2%, а изредка и до 1–3% (в пересчете на Rb2О).

Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море – 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешел в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15%. Минерал карналлит – сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl2·6H2O. Рубидий дает соль аналогичного состава RbCl·MgCl2·6H2O, причем обе соли – калиевая и рубидиевая – имеют одинаковое строение и образуют непрерывный ряд твердых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Физические свойства

Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 Мн/м2 (0,02 кгс/мм2). Кристаллическая решетка Рубидия кубическая объёмно-центрированная, а=5,70Å (0 °C). Атомный радиус 2,48 Å, радиус иона Rb+ 1,49 Å. Плотность 1,525 г/см3 (0 °C), tпл 38,9 °C, tкип 703 °C. Удельная теплоемкость 335,2 дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0·10-5 град-1 (0-38 °С), модуль упругости 2,4 Гн/м2 (240 кгс/мм2), удельное объёмное электрическое сопротивление 11,29·10-6 ом·см (20 °C); Рубидий парамагнитен.

Химические свойства

Щелочной металл, крайне неустойчив на воздухе (реагирует с воздухом в присутствии следов воды с воспламенением). Образует все виды солей — большей частью легкорастворимые (хлораты и перхлораты малорастворимы). Гидроксид рубидия весьма агрессивное вещество к стеклу и другим конструкционным и контейнерным материалам, а расплавленный разрушает большинство металлов (даже золото и платину).

Применение

Применение рубидия многообразно и несмотря на то что по ряду своих областей применения он уступает своими важнейшими физическими характеристиками цезию, тем не менее этот редкий щелочной металл играет важную роль в современной технологии. Можно отметить следующие области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Важно отметить что рубидий имеет очень хорошую и благоприятную сырьевую базу, но при этом положение в обеспеченности ресурсами гораздо более благоприятно нежели в случае с цезием и рубидий способен занять ещё более важную роль например в катализе (где с успехом себя зарекомендовал).

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а так же при стерилизации ряда важных лекарств и пищевых продуктов. Рубидий и его сплавы с цезием это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов. Ацетат рубидия например используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что в свою очередь чрезвычайно актуально в связи с подземной газификацией угля и производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию-133 как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных ХИТ а так же в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400°C).

Плазма рубидия находит применение для возбуждения лазерного излучения.

Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля. игорь

Биологическая роль

Изотопы

В природе существуют два изотопа рубидия: стабильный 85Rb и бета-радиоактивный 87Rb (его период полураспада равен 4,923×1010 лет, это один из изотопов-геохронометров). Искусственным путём получены 30 радиоактивных изотопов рубидия (в диапазоне массовых чисел от 71 до 102), не считая 16 возбуждённых изомерных состояний.

Ссылки

Литература

  • Перельман. Ф. М. Рубидий и цезий. М., Изд-во АН УССР, 1960. 140 стр. с илл.
  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия.- М.-Л.: Химия, 1970.- 407 с





Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Рубидий. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement