Virtual Laboratory Wiki
Advertisement

Расстояние Хэмминга — мера (точнее, метрика) различия объектов одинаковой размерности.

Первоначально метрика была сформулирована Ричардом Хэммингом во время его работы в Bell Labs для определения меры различия между кодовыми комбинациями (двоичными векторами) в векторном пространстве кодовых последовательностей, в этом случае расстоянием Хэмминга между двумя двоичными последовательностями (векторами) и длины называется число позиций, в которых они различны — в такой формулировке расстояние Хэмминга вошло в Словарь алгоритмов и структур данных Национального Института Стандартов США (англ. NIST Dictionary of Algorithms and Data Structures).

Так, расстояние Хэмминга между векторами 00111 и 10101 равно 2 (красным отмечены различающиеся биты). В дальнейшем метрика была обобщена на q-ичные последовательности: для пары строк «выборы» и «забора» расстояние Хэмминга равно трём.

В общем виде расстояние Хэмминга для объектов и размерности задаётся функцией:

Расстояние Хэмминга обладает свойствами метрики, удовлетворяя следующим условиям:

Расстояние Хэмминга в биоинформатике и геномике

Для нуклеиновых кислот (ДНК и РНК) возможность гибридизации двух полинуклеотидных цепей с образованием вторичной структуры - двойной спирали - зависит от степени комплементарности нуклеотидных последовательностей обеих цепей. При увеличении расстояния Хэмминга количество водородных связей, образованных комплементарными парами оснований уменьшается и, соответственно, уменьшается стабильность двойной цепи. Начиная с некоторого граничного расстояния Хэмминга гибридизация становится невозможной.

При эволюционном расхождении гомологичных ДНК-последовательностей расстояние Хэмминга является мерой, по которой можно судить о времени, прошедшем с момента расхождения гомологов, например, о длительности эволюционного отрезка, разделяющего гены-гомологи и ген-предшественник.

Родственные методы

  • Расстояние Левенштейна

Литература

  • Richard W. Hamming. Error-detecting and error-correcting codes, Bell System Technical Journal 29(2):147-160, 1950.
  • Ричард Блейхут. Теория и практика кодов, контролирующих ошибки. М., «Мир», 1986

Ссылки



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Расстояние Хэмминга. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement