Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их принятия.
Определение[]
Определение 1. Пусть задано вероятностное пространство , и на нём определена случайная величина . В частности, по определению, является измеримым отображением измеримого пространства в измеримое пространство , где обозначает борелевскую сигма-алгебру на . Тогда случайная величина индуцирует вероятностную меру на следующим образом:
Мера называется распределением случайной величины .
Способы задания распределений[]
Определение 2. Функция называется (кумулятивной) функцией распределения случайной величины . Из свойств вероятности вытекает
Теорема 1. Функция распределения любой случайной величины удовлетворяет следующим трем свойствам:
- - функция неубывающая;
- ;
- непрерывна справа.
Из того факта, что борелевская сигма-алгебра на вещественной прямой порождается семейством интервалов вида , вытекает
Теорема 2. Любая функция , удовлетворяющая трём свойствам, перечисленным выше, является функцией распределения для какого-то распределения .
Для вероятностных распределений, обладающих определенными свойствами, существуют более удобные способы его задания.
Дискретные распределения[]
Определение 2. Случайная величина называется простой или дискретной, если она принимает не более, чем счётное число значений. То есть , где - разбиение .
Распределение простой случайной величины тогда по определению задаётся: . Введя обозначение , можно задать функцию . Очевидно, что . Используя счётную аддитивность , легко показать, что эта функция однозначно определяет распределение .
Определение 3. Функция , где часто называется дискретным распределением.
Пример 1. Пусть функция задана таким образом, что и . Эта функция задаёт распределение случайной величины такой, что .
Теорема 3. Дискретное распределение обладает следующими свойствами:
- ;
- .
Непрерывные распределения[]
Непрерывное распределение — распределение вероятностей, не имеющее атомов. Любое распределение вероятностей есть смесь дискретного и непрерывного.
Абсолютно непрерывные распределения[]
Определение 4. Распределение случайной величины называется абсолютно непрерывным, если существует неотрицательная функция , такая что . Функция тогда называется плотностью распределения случайной величины .
Пример 2. Пусть , когда , и иначе. Тогда , если .
Очевидно, что для любой плотности распределения верно равенство . Верна и обратная
Теорема 4. Если функция такая, что:
- ;
- ,
то существует распределение такое, что является его плотностью.
Просто применение формулы Ньютона-Лейбница приводит к простому соотношению между кумулятивной функцией и плотностью абсолютно непрерывного распределения.
Теорема 5. Если — непрерывная плотность распределения, а — его кумулятивная функция, то
- .
![]() |
Это незавершённая статья по математике. Вы можете помочь проекту, исправив и дополнив её. |
|
править |
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Распределение вероятностей. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .