Производя́щая фу́нкция моме́нтов — способ задания вероятностных распределений. Используется чаще всего для вычисления моментов.
Определение[]
Пусть есть случайная величина с распределением . Тогда её производящей функцией моментов называется функция, имеющая вид
- .
Пользуясь формулами для вычисления математического ожидания, определение производящей функции моментов можно переписать в виде:
- ,
то есть производящая функция моментов — это двустороннее преобразование Лапласа распределения случайной величины (с точностью до отражения).
Дискретные и абсолютно непрерывные случайные величины[]
Если случайная величина дискретна, то есть , то
- .
Пример. Пусть имеет распределение Бернулли. Тогда
- .
Если случайная величина абсолютно непрерывна, то есть она имеет плотность , то
- .
Пример. Пусть имеет стандартное непрерывное равномерное распределение. Тогда
- .
Cвойства производящих функций моментов[]
Свойства производящих функций моментов во многом аналогичны свойствам характеристических функций в силу похожести их определений.
- Производящая функция моментов однозначно определяет распределение. Пусть суть две случайные величины, и . Тогда . В частности, если обе величины абсолютно непрерывны, то совпадение производящих функций моментов влечёт совпадение плотностей. Если обе случайные величины дискретны, то совпадение производящих функций моментов влечёт совпадение функций вероятности.
- Производящая функция моментов как функция случайной величины однородна:
- .
- Производящая функция моментов суммы независимых случайных величин равна произведению их производящих функций моментов. Пусть суть независимые случайные величины. Обозначим . Тогда
- .
Вычисление моментов[]
- .
См. также[]
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Производящая функция моментов. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .