Начала термодинамики |
---|
![]() |
Статья является частью серии «Термодинамика». |
Нулевое начало термодинамики |
Первое начало термодинамики |
Второе начало термодинамики |
Третье начало термодинамики |
Разделы термодинамики |
Начала термодинамики |
Уравнение состояния |
Термодинамические величины |
Термодинамические потенциалы |
Термодинамические циклы |
Фазовые переходы |
править |
Первое начало термодинамики — одно из основных положений термодинамики, являющееся, по существу, законом сохранения энергии в применении к термодинамическим процессам.
Первое начало термодинамики было сформулировано в середине XIX века в результате работ Ю. Р. Майера, Джоуля и Г. Гельмгольца. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.
Содержание
Формулировка
1) Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил.
2) Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.
Первый закон (первое начало) термодинамики можно сформулировать так:
«Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты , сообщённого системе, в сумме с изменением энергии, связанной с количеством вещества при химическом потенциале , и работы , совершённой над системой внешними силами и полями, за вычетом работы , совершённой самой системой против внешних сил» :
Для элементарного количества теплоты
, элементарной работы и малого приращения (полного дифференциала) внутренней энергии первый закон термодинамики имеет вид:Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.
Важно заметить, что дифференциалами, а и — нет. Приращение теплоты часто выражают через температуру и приращение энтропии: .
и являются полнымиСлучаи
Рассмотрим несколько случаев:
- Если , то это означает, что тепло к системе подводится.
- Если , аналогично — тепло отводится.
- Если адиабатически изолированной. , то систему называют
Обобщая: в конечном процессе
элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами.При отсутствии работы над системой и потоков энергии-вещества, когда
, , , выполнение системой работы приводит к тому, что , и энергия системы должна убывать. Из ограниченности энергии как раз и следует невозможность двигателя первого рода, выполняющего бесконечную работу за счёт собственной энергииПервое начало термодинамики:
а) при изобарном процессе
б) при изохорном процессе (A=0)
в) при изотермическом процессе
См. также
Внешние ссылки
Первый закон термодинамики в теории относительности
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Первое начало термодинамики. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .