Virtual Laboratory Wiki
Advertisement

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

Количественное определение парникового эффекта

Количественно величина парникового эффекта определяется как разница между средней приповерхностной температурой атмосферы планеты и её эффективной температурой . Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами (см. таблицу 1, температуры даны в Кельвинах, - средняя максимальная температура (полдень на экваторе), - средняя минимальная температура).

Таблица 1
Планета Атм. давление у поверхности, атм.
Венера 90 231 735 504 - - -
Земля 1 249 288 39 313 200 113
Луна 0 0 393 113 280
Марс 0,006 210 218 8 300 147 153

Природа парникового эффекта

Файл:Atmospheric Transmission.png

Рис. 1. Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):
1. Интенсивность солнечной радиации (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны
3. Спектры поглощения различных парниковых газов и рэлеевское рассеяние.

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400—​1500 нм (видимый свет и ближний инфракрасный диапазон) приходится 75 % энергии солнечного излучения, большинство газов не поглощают в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли () 75 % теплового излучения приходится на диапазон 7,8—28 мкм, для Венеры () — 3,3—12 мкм.

Атмосфера, содержащая газы, поглощающие в этой области спектра (т. н. парниковые газыH2O, CO2, CH4 и пр. — см. Рис. 1), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

Исторические сведения

Идея о механизме парникового эффекта была впервые изложена в 1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция)[1].

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт М. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта — поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления теплового равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом.

Влияние парникового эффекта на климат Земли

Исходя из того, что «естественный» парниковый эффект — это устоявшийся, сбалансированный процесс, увеличение концентрации «парниковых» газов в атмосфере должно привести к усилению парникового эффекта, который в свою очередь приведет к глобальному потеплению климата. Количество CO2 в атмосфере неуклонно растет вот уже более века из-за того, что в качестве источника энергии стали широко применяться различные виды ископаемого топлива (уголь и нефть). Кроме того, как результат человеческой деятельности в атмосферу попадают и другие парниковые газы, например, метан, закись азота и целый ряд хлоросодержащих веществ. Несмотря на то, что они производятся в меньших объёмах, некоторые из этих газов куда более опасны с точки зрения глобального потепления, чем углекислый газ.

Деятельность человека приводит к повышению концентрации парниковых газов в атмосфере. Увеличение концентрации парниковых газов приведет к разогреву нижних слоев атмосферы и поверхности земли. Любое изменение в способности Земли отражать и поглощать тепло, в том числе вызванное увеличением содержания в атмосфере тепличных газов и аэрозолей, приведет к изменению температуры атмосферы и мировых океанов и нарушит устойчивые типы циркуляции и погоды.

Тем не менее, ведутся ожесточенные споры вокруг того, какое конкретно количество этих газов вызовет потепление климата и в какой степени, а также как скоро это произойдет. Даже когда изменение климата действительно происходит, в этом трудно быть стопроцентно уверенным. Мировые средние температуры могут сильно колебаться в пределах нескольких лет и десятилетий — причем по естественным причинам. Проблема в том, что считать средней температурой, и на основании каких критериев судить, действительно ли она изменилась в ту или другую сторону.

В конце восьмидесятых — начале девяностых годов XX века несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения в том, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 — 0,6 градусов Цельсия. Существует научный конценсус, что жизнедеятельность человека является основным фактором который влияет на текущее повышение температуры на земле[2][3].

Возможно ,однако ,что существующий скепсис в вопросе глобального потепления порожден корпорациями, которым не выгодно сокращать или адаптировать свое производство. Многие компании содержали "своих" ученых, которые должны были опровергать влияние человека на климат [источник?].


См. также

Список Литературы

  1. Joseph Fourier. Mémoire sur les températures du globe terrestre et des espaces planétaires p.97-125 Mémoires de l’Académie royale des sciences de l’Institut de France, t. VII, p.570 à 604. Paris, Didot; 1827 // Gallica-Math: Œuvres complètes
  2. Joint science academies' statement: The science of climate change (ASP). Royal Society (2001-05-17). — «The work of the Intergovernmental Panel on Climate Change (IPCC) represents the consensus of the international scientific community on climate change science»  Проверено 1 апреля 2007.
  3. (2007-10-18) "Rising to the climate challenge". Nature 449 (7164): 755. DOI:10.1038/449755a. Проверено 2007-11-06.

Ссылки

Статьи

Международные соглашения





Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Парниковый эффект. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement