Virtual Laboratory Wiki
Advertisement

Органические вещества, органические соединения — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).

Название органические соединения появилось на ранней стадии развития химии, во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1824 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу - несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Количество известных органических соединений давно перевалило за 10 млн. Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.

  1. Различная топология образования связей между атомами, образующими органические соединения (прежде всего атомами углерода), приводит к появлению соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами — изомеров. Данное явление носит название изомерии.
  2. Явление гомологии — существования рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу (чаще всего CH2). Целый ряд физико-химических свойств в первом приближении изменяется симбатно по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.

Органическая номенклатура

Органическая номенклатура — это система классификации и наименований органических веществ.


Классификация

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.

Классификация органических веществ.

  • Органические вещества
    • Углеводороды
      • Предельные углеводороды (алканы)
      • Непредельные углеводороды
        • Алкены
        • Алкины
        • Алкадиены (диеновые углеводороды)
      • Циклические углеводороды
        • Циклоалканы
        • Арены (ароматические углеводороды)
    • Производные углеводородов

Алифатические соединения

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Углеводороды — Алканы — Алкены — Диены, или Алкадиены — Алкины — Галогенуглеводороды — Спирты — Меркаптаны — Простые эфиры — Альдегиды — Кетоны — Карбоновые кислоты — Сложные эфиры — Углеводы, или сахара — Нафтены — Амиды — Амины — Липиды — Нитрилы

Ароматические соединения

Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)

Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил- Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.

Гетероциклические соединения

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом

Пиррол-Тиофен-Фуран-Пиридин

Полимеры

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).

Структурный анализ органических веществ

В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.

Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.

Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.

Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.

Спектроскопия ядерного магнитного резонанса ЯМР.

Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе

Про другие методы смотри в разделе Аналитическая химия.

Алифатические соединения

Алифатические углеводороды

  • Алканы
  • Алкены
  • Алкадиены
  • Алкины

Функциональные алифатические соединения

  • Галогеноалканы
  • Спирты
  • Альдегиды
  • Простые эфиры
  • Кетоны
  • Карбоновые кислоты и их производные
  • Амины
  • Амиды

Ароматические соединения

Ароматические углеводороды

  • Бензол
  • Толуол
  • Ксилолы

Конденсированные ароматические углеводороды

  • Бензпирен
  • Нафталин
  • Антрацен
  • Фенантрен

Функциональные ароматические соединения

  • Анилины
  • Фенолы

Гетероциклические соединения

Номенклатура гетероциклических соединений

Пятичленные ароматические гетероциклы с одним гетероатомом

  • Пиррол
  • Фуран
  • Тиофен
  • Селенофен

Пятичленные ароматические гетероциклы с количеством гетероатомов более одного

Важнейшие представители:

  • Имидазол
  • Пиразол
  • Оксазол
  • Изоксазол
  • Тиазол
  • Триазол

Шестичленные ароматические гетероциклы

  • Пиридин
  • Пиримидин

Конденсированные ароматические гетероциклы

  • Пурин
  • Индол

Шаблон:Органическая химия


Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Органические вещества. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement