Virtual Laboratory Wiki
Advertisement

Задачей оптимизации в математике является нахождение экстремума (минимума или максимума) действительной функции в некоторой области. Как правило, рассматриваются области принадлежащие заданные набором равенств и неравенств.

Постановка задачи оптимизации

Для того, чтобы корректно поставить задачу оптимизации необходимо задать:

  1. Допустимое множество — множество ;
  2. Целевую функцию — отображение ;
  3. Критерий поиска (max или min).

Тогда решить задачу означает одно из:

  1. Показать, что .
  2. Показать, что целевая функция не ограничена.
  3. Найти .
  4. Если , то найти .

Если минимизируемая функция не является выпуклой, то часто ограничиваются поиском локальных минимумов и максимумов: точек таких, что всюду в некоторой их окрестности для минимума и для максимума.

Если допустимое множество , то такая задача называется задачей безусловной оптимизации, в противном случае — задачей условной оптимизации.

Классификация методов оптимизации

Методы, по средством которых решают задачи оптимизации, подразделяются на виды, соответствующие задачам, к которым они применяются:

  • Локальные методы (задача оптимизации унимодальной целевой функции).
  • Глобальные методы (имеют дело с многоэкстремальными целевыми функциями. При глобальном поиске основной задачей является выявление тенденций глобального поведения целевой функции.).

Существующие в настоящее время методы поиска можно разбить на три большие группы:

1) детерминированные,

2) случайные,

3) комбинированные.

Некоторые детерминированные методы:

  • Задачи оптимизации, в которых целевая функция и ограничения являются линейными функциями, разрешаются так называемыми методами линейного программирования.
  • В противном случае имеют дело с задачей нелинейного программирования и применяют соответствующие методы. В свою очередь из них выделяют две частные задачи:

Помимо того, оптимизационные методы делятся на следующие группы:

  • аналитические методы;
  • численные методы;
  • графические методы.


Также они разделяются по критерию размерности допустимого множества на методы одномерной оптимизации и методы многомерной оптимизации.

Литература

  1. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. пец. вузов. — М.: Высш. шк., 1986.
  1. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  1. Коршунов Ю.М., Коршунов Ю.М. Математические основы кибернетики. — М.: Энергоатомиздат, 1972.
  1. Максимов Ю.А.,Филлиповская Е.А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
  1. Максимов Ю.А. Алгоритмы линейного и дискретного программирования. — М.: МИФИ, 1980.
  1. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.
  1. Жиглявский А.А., Жилинкас А.Г. Методы поиска глобального экстремума. — М.: Наука, Физматлит, 1991.
  1. Растригин Л.А. Статистические методы поиска. — М.: 1968.
  1. Абакаров А.Ш., Сушков Ю.А. Статистическое исследование одного алгоритма глобальной оптимизации. — Труды ФОРА, 2004.


Ссылки

Глобальная оптимизация, принятие решений — Программные системы поддержки принятия оптимальных решений. Глобальные алгоримы.



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Оптимизация (математика). Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement