Virtual Laboratory Wiki
Advertisement
Table of Opticks, Cyclopaedia, Volume 2

Таблица оптики, Энциклопедия, 1728

О́птика (от др.-греч. ὀπτική появление или взгляд) — раздел физики, который описывает поведение, свойства, первопричинность и природу света, объясняет связанные с этим явления. Под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра электромагнитных излучений.

Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Эти участки спектра различаются не по своей природе, а по способу генерации и приёма излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.

Волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. В зависимости от длины волны, на первый план выступают разные явления, разные методы исследования и разные практические применения. Поэтому на оптику нельзя смотреть как на замкнутую дисциплину, изучающую только видимую область спектра, отделенную от других областей чёткими границами. Закономерности и результаты, найденные в этих других областях, могут оказаться применимыми в видимой области спектра и наоборот.

Аналогичные явления встречаются в распространении рентгеновского излучения и радиоволн, в микроволновых печах и т. п. Оптика, таким образом, может рассматриваться как раздел электромагнетизма. Некоторые оптические явления зависят от квантовой природы света, что связывает некоторые области оптики с квантовой механикой. Практически, огромное большинство оптических явлений могут рассматриваться, как электромагнитные колебания, описанные Уравнениями Максвелла.

Оптическая наука — часть многих прикладных дисциплин, включая электротехнику, физику, психологию, медицину (особенно офтальмологию). В этих, а также в междисциплинарных сферах широко применяются достижения прикладной оптики.

В соединении с точной механикой оптика является основой оптико-механической промышленности

Разделы оптики[]

  • Классическая оптика
    • Геометрическая оптика
    • Физическая оптика
      • волновая оптика
      • волновая оптика в природе
  • Зрительное восприятие
  • физика лазеров (когерентная оптика)
  • Нелинейная оптика
  • Квантовая оптика
  • Градиентная оптика

Классическая оптика[]

До появления квантовой оптики оптика в целом основывалась на классическом электромагнетизме. Классическая оптика делится на две главные ветви: геометрическая оптика и физическая оптика.

Геометрическая оптика[]

Основная статья: Геометрическая оптика

Геометрическая оптика или оптика луча, описывает распространение света термином луч. Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона, и вошли потом в «Оптику», оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришёл к выводу, что «явление окрашивания остается ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своём трактате.

В своем небольшом трактате первым он рассмотрел прямолинейное распространение света, во второй части — отражение, в третьей — преломление, в четвёртой — атмосферную рефракцию, в пятой — двойное лучепреломление и в шестой — формы линз.

Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отражения — явлений, интерпретация которых вынудила Ньютона усложнять свою теорию, нагромождая одну теорию на другую. По существу, эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в более плотной среде.

«Луч» в геометрической оптике — абстрактный геометрический объект, перпендикулярный фронту импульса фактических оптических волн. Геометрическая оптика описывает правила прохождения лучей через оптическую систему.

Приняв это абстрактное понятие и связанные с ним правила, мы существенно упрощаем задачу оптики, но не в состоянии объяснить много важных оптических эффектов, например дифракцию и поляризацию.

Параксиальное приближение[]

Основная статья: Параксиальное приближение

Следующее упрощение в геометрической оптике - параксиальное приближение, или «приближение малых углов». Математически поведение луча становится линейным, позволяя представить оптические компоненты простыми матрицами. Применение методов Гауссовской оптики позволяет найти свойства первого порядка оптических систем.

Гауссовское распространение луча — расширение параксиальной оптики, описывающее более точную модель поведения лучей. Используя параксиальное приближение и явление дифракции, данный набор методов описывает расширение светового пучка с расстоянием и минимальный размер светового пятна, в которое может быть сосредоточен световой пучок. Тем самым эта модель является промежуточной между геометрической и физической оптикой.

Физическая оптика[]

Основная статья: Физическая оптика


Файл:Light dispersion conceptual.gif

Наглядное изображение дисперсии света в призме

Физическая оптика или оптика волны основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу (волны) волны. Этот раздел оптики объясняет дифракцию, интерференцию, эффекты поляризации, аберрацию и природу других сложных эффектов.

В этом разделе оптики также используются приближения, а не полная электромагнитная модель распространения света. Однако в простых случаях, а по мере роста доступных вычислительных мощностей и в более сложных, становится возможным полный расчёт по точной теории.

Темы, связанные с классической оптикой[]

  • Аберрация
  • Когерентность
  • Дифракция
  • Дисперсия (оптика)
  • Аберрация (оптика)
  • Принцип Ферма
  • Оптика фурье
  • Градиентная оптика
  • Поляризация волн
  • Световой луч
  • Трассировка лучей
  • Отражение (физика)
  • Преломление
  • Рассеивание
  • Волна
  • Геометрическая оптика
    • Линза (оптика)
    • Зеркало
    • Призма (оптика)
  • Точная механика и оптика

Современная оптика[]

Современная оптика охватывает области оптической науки и разработок, которые стали популярными в 20-ом столетии. Эти области оптической науки в основном касаются электромагнитных или квантовых свойств света, но на самом деле включают другие области.

Физиологическая оптика[]

Основная статья: Зрительное восприятие

Физиологическая оптика — междисциплинарная наука о зрительном восприятии света. Она объединяет сведения по биофизике, биохимии и психологии зрительного восприятия.

Темы, связанные с современной оптикой[]

  • Кристаллическая оптика
  • Дифракция
  • Волновод
  • Голография
  • Интегральная оптика
  • Исчисление Джонса
  • Лазер
  • Микрооптика
  • Нелинейная оптика
  • Оптические методы моделирования
  • Оптическое распознавание образов
  • Оптический компьютер
  • Фотометрия
  • Фотоника
  • Квантовая оптика
  • Радиометрия
  • Оптика тонких плёнок
  • Рентгеновское зеркало

См. также[]

  • Свет
  • Цвет
  • Поляризация
  • Оптические системы
  • Оптические материалы
  • Оптическое общество Америки OSA
  • Общество оптики и фотоники SPIE

Ссылки[]

Литература[]

  • Б. М. Яворский и А. А. Детлаф Справочник по физике. — М.: Наука, 1971.
Advertisement