Плотность вероятности Плотность непрерывного равномерного распределения | |
Функция распределения Функция распределения непрерывного равномерного распределения | |
Параметры | , - коэффициент сдвига, - коэффициент масштаба |
Носитель | |
Плотность вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | любое число из отрезка |
Дисперсия | |
Коэффициент асимметрии | |
Коэффициент эксцесса | |
Информационная энтропия | |
Производящая функция моментов | |
Характеристическая функция |
Непреры́вное равноме́рное распределе́ние — в теории вероятностей распределение, характеризующееся тем, что вероятность любого интервала зависит только от его длины.
Определение[]
Говорят, что случайная величина имеет непрерывное равномерное распределение на отрезке , где , если её плотность имеет вид:
Пишут: . Иногда значения плотности в граничных точках и меняют на другие, например или . Так как интеграл Лебега от плотности не зависит от поведения последней на множествах меры нуль, эти вариации не влияют на вычисления связанных с этим распределением вероятностей.
Функция распределения[]
Интегрируя определённую выше плотность, получаем:
Так как плотность равномерного распределения разрывна в граничных точках отрезка , то функция распределения в этих точках не является дифференцируемой. В остальных точках справедливо стандартное равенство:
- .
Производящая функция моментов[]
Простым интегрированием получаем:
- ,
откуда находим все интересующие моменты непрерывного равномерного распределения:
- ,
- ,
- .
Вообще,
- .
Стандартное равномерное распределение[]
Если , а , то есть , то такое непрерывное равномерное распределение называют стандартным. Имеет место элементарное утверждение:
- Если случайная величина , и , где , то .
Таким образом, имея генератор случайной выборки из стандартного непрерывного равномерного распределения, легко построить генератор выборки любого непрерывного равномерного распределения.
Более того, имея такой генератор и зная функцию обратную к функции распределения случайной величины, можно построить генератор выборки любого непрерывного распределения (не обязательно равномерного) с помощью метода обратного преобразования. Поэтому, стандартно равномерно распределённые случайные величины иногда называют базовыми случайными величинами.
См. также[]
|
править |
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Непрерывное равномерное распределение. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .