Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц.
Содержание
История КХД
С изобретением пузырьковой камеры и искровой камеры в 1950-х гг., экспериментальная физика элементарных частиц обнаружила большое и постоянно растущее число частиц, названных адронами. Стало ясно, что все они не могут быть элементарными. Частицы были классифицированы по электрическому заряду и изоспину; затем (в 1953 г.) Мюрреем Гелл-Манном и Казухико Нисидзимой — по странности. Для лучшего понимания общих закономерностей адроны были объединены в группы и по другим сходным свойствам: массам, времени жизни и пр. В 1963 г. Гелл-Манн и, независимо от него, Джордж Цвейг, высказали предположение, что структура этих групп (фактически, SU(3)-мультиплетов) может быть объяснена существованием более элементарных структурных элементов внутри адронов. Эти частицы были названы кварками. Все многообразие известных на тот момент адронов могло быть построено всего из трех кварков: u d и s. Впоследствии было открыто еще три более массивных кварка. Каждый из этих кварков является носителем определенного квантового числа, названного его ароматом.
Однако, в подобном описании одна частица, Δ++(1232), оказалась наделена необъяснимыми свойствами; в кварковой модели, она составлена из трех u-кварков со спинами, ориентированными в одном направлении, причем орбитальный момент их относительного движения равен нулю. Все три кварка в таком случае должны находиться в одном и том же квантовом состоянии, а так как кварк является фермионом, подобная комбинация запрещается принципом исключения Паули. В 1965 г. Моо-Юнг Хан совместно с Йохиро Намбу и Оскар В. Гринберг независимо друг от друга решили эту проблему, предположив, что кварк обладает дополнительными степенями свободы калибровочной группы SU(3), позже названными «цветовыми зарядами». Хан и Намбу отметили, что кварк взаимодействует через октет векторных калибровочных бозонов, названных глюонами (англ. «glue» — «клей»).
Поскольку свободных кварков не было обнаружено, считалось, что кварки были просто удобными математическими конструкциями, а не реальными частицами. Эксперименты по глубоконеупругому рассеянию электронов на протонах и связанных нейтронах показали, что в области больших энергий рассеяние происходит на каких-то элементах внутренней структуры, имеющих значительно меньшие размеры, чем размер нуклона: Ричард Фейнман назвал эти элементы «партонами» (так как они являются частями адронов). Результаты были окончательно проверены в экспериментах в SLAC в 1969 г. Дальнейшие исследования показали, что партоны следует отождествить с кварками, а также с глюонами.
Хотя результаты изучения сильного взаимодействия остаются немногочисленными, открытие асимптотической свободы Дэвидом Гроссом, Дэвидом Полицером и Франком Вилчеком позволило сделать множество точных предсказаний в физике высоких энергий, используя методы теории возмущений. Свидетельство существования глюонов было обнаружено в трехструйных событиях в PETRA в 1979 г. Эти эксперименты становились все более точными, достигая высшей точки в проверке пертурбативной КХД на уровне нескольких процентов в LEP в CERN.
Другая сторона асимптотической свободы — конфайнмент. Так как сила взаимодействия между цветовыми зарядами не уменьшается с расстоянием, предполагается, что кварки и глюоны никогда не могут быть освобождены из адрона. Этот аспект теории подтвержден расчетами решёточной КХД, но математически не доказан. Поиск этого доказательства — одна из семи «задач тысячелетия», объявленных Математическим институтом Клэя. Другие перспективы непертурбативной КХД — исследование фаз кварковой материи, включая кварк-глюнную плазму.
Формулировка КХД (квантовая хромодинамика)
КХД простыми словами
Квантовая хромодинамика начинается с того, что мы постулируем, что каждый кварк обладает новым внутренним квантовым числом, условно называемым цветовым зарядом, или просто цветом. Термин «цвет», конечно же, не имеет никакого отношения к оптическим цветам и введён исключительно для целей популяризации. Дело в том, что инвариантная в цветовом пространстве комбинация есть сумма трёх различных цветов. Это сильно напоминает то, что сумма трёх основных оптических цветов — красного, зелёного и синего — дает белый цвет, т. е. бесцветное состояние. Именно в этом смысле базисные вектора в цветовом пространстве часто называют не первый, второй, третий, а «красный» (к), «зелёный» (з) и «синий» (с). Антикваркам соответствуют анти-цвета (ак, аз, ас), причём комбинация «цвет + антицвет» тоже бесцветна. Глюоны же в цветовом пространстве есть комбинации «цвет-антицвет», причём такие комбинации, которые не являются инвариантными относительно вращений в цветовом пространстве. Таких независимых комбинаций оказывается восемь, и выглядят они следующим образом:
Например, «синий» кварк может испустить «синий-антизелёный» глюон и превратиться при этом в «зелёный» кварк.
Лагранжиан КХД
Новая внутренняя степень свободы, цвет, означает, что кварковому полю приписывается определённый вектор состояния
единичной длины в комплексном трёхмерном цветовом пространстве C(3). Вращения в цветовом пространстве C(3), т. е. линейные преобразования, сохраняющие длину, образуют группу SU(3), размерность которой равна 32-1=8.Поскольку группа SU(3) связна, все её элементы можно получить экспоненциированием алгебры ASU(3). Следовательно, любое вращение в C(3)
можно представить в виде матрицы Гелл-Манна не коммутируют друг с другом, , калибровочная теория, построенная на группе SU(3), является неабелевой (то есть является теорией Янга — Миллса).
, где 3×3 матрицы (a = 1 … 8) называются матрицами Гелл-Манна и образуют алгебру ASU(3). ПосколькуДалее используется стандартный принцип калибровочной инвариантности. Рассмотрим лагранжиан свободного кваркового поля
Этот лагранжиан инвариантен относительно глобальных калибровочных преобразований кварковых и антикварковых полей: , где не зависят от координат в обычном пространстве.
Если же потребовать инвариантность относительно локальных калибровочных преобразований (то есть при ), то приходится вводить вспомогательное поле . В результате, лагранжиан КХД, инвариантный относительно локальных калибровочных преобразований, имеет вид (суммирование по ароматам кварков также предполагается)
где
тензор напряжённостей глюонного поля, а есть само глюонное поле.Видно, что этот лагранжиан порождает наряду с вершиной взаимодействия кварк-антикварк-глюон и трёхглюонные и четырёхглюонные вершины. Иными словами, неабелевость теории привела к взаимодействию глюонов и к нелинейным уравнениям Янга-Миллса.
Применимость КХД к реальным процессам
Расчёты на основе квантовой хромодинамики хорошо согласуются с экспериментом в тех ситуациях, когда кварки и глюоны являются адекватным выбором степеней свободы. Такая ситуация имеет место при адронных столкновениях высоких энергий, в особенности, когда передача импульса от одной частицы к другой тоже велика по сравнению с типичным адронным энергетическим масштабом (порядка 1 ГэВ). При более низких энергиях, из-за сильных многочастичных корреляций работа в терминах кварков и глюонов становится малоосмысленной, и приходится на основе КХД строить эффективную теорию взаимодействия бесцветных объектов — адронов.
Подробно про применение квантовой хромодинамики к описанию адронных столкновений см в статье Современное состояние теории сильных взаимодействий.
Ссылки
- И.М. Дремин, А.Б. Кайдалов Квантовая хромодинамика и феноменология сильных взаимодействий // Успехи физических наук. Том 176, № 3., с. 275, 2006 г.
Учебные материалы
- Г. Альтарелли Введение в КХД (лекции, прочитанные на Европейской школе по физике высоких энергий)
Исторические материалы
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Квантовая хромодинамика. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .