Имитационное моделирование — это метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.
Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью с достаточной точностью описывающей реальную систему и с ней проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).
Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае математическая модель заменяется имитатором или имитационной моделью.
Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.
Применение имитационного моделирования[]
К имитационному моделированию прибегают, когда:
- дорого или невозможно экспериментировать на реальном объекте;
- невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
- необходимо сымитировать поведение системы во времени.
Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами – разработке симулятора (английский термин – simulation modeling) исследуемой предметной области для проведения различных экспериментов. Имитационную модель можно рассматривать как множество правил (дифференциальных уравнений, карт состояний, автоматов, сетей и т.п.), которые определяют, в какое состояние система перейдёт в будущем из заданного текущего состояния. Имитация – это процесс «выполнения» модели, проводящий её через (дискретные или непрерывные) изменения состояния во времени.
Имитационное моделирование позволяет имитировать поведение системы во времени и в пространстве (геометрическом, семантическом и др., в целом - экспансия). Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.
Имитация как метод решения нетривиальных задач получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.
Можно выделить две разновидности имитации:
- Метод Монте-Карло (метод статистических испытаний);
- Метод имитационного моделирования (статистическое моделирование).
Виды имитационного моделирования[]
- Агентное моделирование – относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей – получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент – некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
- Дискретно-событийное моделирование – подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений – от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960х годах.
- Системная динамика – парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Форрестером в 1950 годах.
- "Вычислимые модели общего равновесия" (Computable General Equilibrium models (CGE)) - поиск условий общего равновесия агентов (устойчивое развитие) через балансирование спроса и предложения.
- Семантическое моделирование ведется исходя из теории рефлексии В.А. Лефевра с целью определения условий конструктивной коммуникации агентов (акторов) и формирования ими среды толерантной жизнедеятельности.
Области применения[]
- Бизнес-процессы
- Боевые действия
- Динамика населения
- ИТ-инфраструктура
- Математическое моделирование исторических процессов
- Логистика
- Пешеходная динамика
- Производство
- Рынок и конкуренция
- Сервисные центры
- Цепочки поставок
- Уличное движение
- Управление проектами
- Экономика здравоохранения
- Экосистемы
- Социокультурная динамика
- Футуродизайн
- Проектное прогнозирование автономных поселений
- Жанры компьютерных игр
- Ситуационный театр
Популярные системы имитационного моделирования[]
- AnyLogic
- Альянс-кульман
- Arena
- eM-Plant
- Powersim
- GPSS
См. также[]
- Сети Петри
- Dynamic stochastic general equilibrium
- Спонтанное проектирование
- Компьютерное моделирование
- Имитационное моделирование и теория массового обслуживания
Литература[]
- Хемди А. Таха Глава 18. Имитационное моделирование // Введение в исследование операций = Operations Research: An Introduction. — 7-е изд. — М.: «Вильямс», 2007. — С. 697-737. — ISBN 0-13-032374-8
- Макаров В.Л. Вычислимая модель российской экономики (RUSEC). — М.: ЦЭМИ, 1999. — ISBN Препринт #WP/99/069
![]() |
Это незавершённая статья по математике. Вы можете помочь проекту, исправив и дополнив её. |
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Имитационное моделирование. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .