Virtual Laboratory Wiki
Advertisement

Дру́жественные чи́сла — два натуральных числа́, для которых сумма всех делителей первого числа́ (кроме него самого) равна второму числу и сумма всех делителей второго числа́ (кроме него самого) равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные чи́сла: каждое совершенное число дружественно себе. Обычно же, говоря о дружественных числах, имеют в виду пары из двух разных чисел.

Дружественные числа были открыты последователями Пифагора. Правда пифагорейцы знали только одну пару дружественных чисел — 220 и 284. Только спустя много столетий Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.

Формулу, дающую 3 пары дружественных чисел, открыл примерно в 850 году арабский астроном и математик Сабит ибн Курра (826901): если

,
,
,

где  — натуральное число, а  — простые числа, то и  — пара дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для , но больше никаких пар дружественных чисел для . Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.

На ноябрь 2006 известно 11 446 960 пар дружественых чисел. Все они состоят из двух чётных или двух нечётных чисел. Есть ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, их произведение должно быть больше .

Краткая таблица дружественных чисел[]

Ниже приведены все пары дружественных чисел, меньших 100 000.

  1. 220 и 284 (Пифагор, около 500 до н. э.)
  2. 1184 и 1210 (Паганини, 1860)
  3. 2620 и 2924 (Эйлер, 1747)
  4. 5020 и 5564 (Эйлер, 1747)
  5. 6232 и 6368 (Эйлер, 1750)
  6. 10744 и 10856 (Эйлер, 1747)
  7. 12285 и 14595 (Браун, 1939)
  8. 17296 и 18416 (Аль-Банна, около 1300, Фариси, около 1300, Ферма, 1636)
  9. 63020 и 76084 (Эйлер, 1747)
  10. 66928 и 66992 (Эйлер, 1750)
  11. 67095 и 71145 (Эйлер, 1747)
  12. 69615 и 87663 (Эйлер, 1747)
  13. 79750 и 88730 (Рольф (Rolf), 1964)

Способы нахождения[]

  • Теорема Сабита. Если все три числа , и простые, то числа и — дружественные.
  • Рецепт Вальтера Боро. Если для пары дружественных чисел вида и числа и являются простыми, причём не делится на , то при всех тех натуральных , при которых оба числа и просты, числа и — дружественные.

Внешние ссылки[]

См. также[]

  • Совершенное число



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Дружественные числа. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement