Virtual Laboratory Wiki
Advertisement

Дихотомия (греч. διχο - на две части + τομία — сечение) — последовательное деление на две части, не связанные между собой. Дихотомическое деление в математике, философии, логике и лингвистике является способом образования взаимоисключающих подразделов одного понятия или термина и служат для образования классификации элементов.

Пример[]

Объём понятия «человек» можно разделить на два взаимоисключающих класса: мужчины и не мужчины. Понятия «мужчины» и «не мужчины» являются противоречащими друг другу, поэтому их объёмы не пересекаются. От дихотомии следует отличать обычное деление, приводящее к тому же самому результату. Например, объём понятия «человек» можно разделить по признаку пола на мужчин и жен­щин. Но между понятиями мужчина и женщина нет логичес­кого противоречия, поэтому здесь нельзя говорить о дихотомичес­ком делении.

Преимущества и недостатки[]

Дихотомическое деление привлекательно своей простотой. Дей­ствительно, при дихотомии мы всегда имеем дело лишь с двумя классами, которые исчерпывают объем делимого понятия. Таким образом, дихотомичес­кое деление всегда соразмерно; члены деления исключают друг друга, так как каждый объект делимого множества попадает только в один из классов а или не а; деление проводится по одному основа­нию — наличие или отсутствие некоторого признака. Обозначив делимое понятие буквой а и выделив в его объёме некоторый вид, скажем, b, можно разделить объем а на две части — b и не b.

Дихотомическое деление имеет недостаток: при делении объё­ма понятия на два противоречащих понятия каждый раз остаётся крайне неопределённой та его часть, к которой относится части­ца «не». Если разделить учёных на историков и не историков, то вторая группа оказывается весьма неясной. Кроме того, если в начале дихотомического деления обычно довольно легко устано­вить наличие противоречащего понятия, то по мере удаления от первой пары понятий найти его становится все труднее.

Применение[]

Дихотомия обычно используется как вспомогательный приём при установлении клас­сификации.

Также она известна благодаря достаточно широко используемому методу поиска, так называемому методу дихотомии. Он применяется для нахождения значений действительно-значной функции, определяемому по какому-либо критерию (это может быть сравнение на минимум, максимум или конкретное число). Рассмотрим метод дихотомии условной одномерной оптимизации (для определённости минимизации).

Метод дихотомии[]

Метод дихотомии несколько схож с методом двоичного поиска, однако отличается от него критерием отбрасывания концов.

Пускай задана функция .

Разобьём мысленно заданный отрезок пополам и возьмём две симметричные относительно центра точки и так, что:

,

где — некоторое число в интервале

Отбросим тот из концов изначального интервала, к которому ближе оказалась одна из двух вновь поставленных точек с максимальным значением (напомним, мы ищем минимум), то есть:

  • Если , то берётся отрезок , а отрезок отбрасывается.
  • Иначе берётся зеркальный относительно середины отрезок , а отбрасывается .

Процедура повторяется пока не будет достигнута заданная точность, к примеру, пока длина отрезка не достигнет удвоенного значения заданной погрешности.

На каждой итерации приходится вычислять новые точки. Можно добиться того, чтобы на очередной итерации было необходим высчитывать лишь одну новую точку, что заметно способствовало бы оптимизации процедуры. Это достигается путём зеркального деления отрезка в золотом сечении, в этом смысле метод золотого сечения можно рассматривать, как улучшение метода дихотомии с параметром .

См. также[]

Ссылки[]

Литература[]

  1. Ананий В. Левитин Глава 11. Преодоление ограничений: Метод деления пополам // [= 0-201-74395-7 Алгоритмы: введение в разработку и анализ] = Introduction to The Design and Analysis of Aigorithms. — М.: «Вильямс», 2006. — С. 476-480.
  1. Акулич И.Л. Математическое программирование в примерах и задачах: Учеб. пособие для студентов эконом. пец. вузов. — М.: Высш. шк., 1986.
  1. Амосов А.А., Дубинский Ю. А., Копченова Н.П. Вычислительные методы для инженеров. — М.: Мир, 1998.
  1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.Г. Численные методы. — 8-е изд.. — М.: Лаборатория Базовых Знаний, 2000.
  1. Волков Е.А. Численные методы. — М.: Физматлит, 2003.
  1. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. — М.: Мир, 1985.
  1. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. — М.: Наука, 1970. — С. 575-576.
  1. Коршунов Ю.М., Коршунов Ю.М. Математические основы кибернетики. — Энергоатомиздат, 1972.
  1. Максимов Ю.А.,Филлиповская Е.А. Алгоритмы решения задач нелинейного программирования. — М.: МИФИ, 1982.
  1. Максимов Ю.А. Алгоритмы линейного и дискретного программирования. — М.: МИФИ, 1980.




Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Дихотомия. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement