Virtual Laboratory Wiki
Advertisement

Файл:Diagonal uhlopricka.jpg

В математике, диагональ имеет геометрический смысл, а также используется в терминах квадратных матриц.

Файл:Diagonals.svg

Шестиугольник с диагоналями

Многоугольники

Для многоугольников, диагональ это отрезок, соединяющий две вершины, не лежащие на одной стороне. Так, четырёхугольник имеет две диагонали, соединяющие противолежащие вершины. У выпуклого многоугольника диагонали проходят внутри него. Это не выполняется для самопересекающихся многоугольников. Многоугольник выпуклый тогда и только тогда, когда его диагонали лежат внутри.

Пусть n — число вершин многоугольника, вычислим d — число возможных разных диагоналей. Каждая вершина соединена диагоналями со всеми другими вершинами, кроме двух соседних и, естественно, себя самой. Таким образом, из одной вершины можно провести n-3 диагонали; перемножим это на число вершин

(n − 3) × n,

однако, мы посчитали каждую диагональ дважды (по разу для каждого конца) — отсюда,

Матрицы

В случае с квадратными матрицами, главная диагональ является диагональной линией элементов, которая проходит с северо-запада на юго-восток. Например, единичная матрица может быть описана, как матрица, имеющая единицы на главной диагонали и нули вне её. Диагональ с юго-запада на северо-восток часто называется побочная диагональ. Наддиагональными элементами называются такие, что лежат выше и правее главной диагонали. Поддиагональными — те, что ниже и левее. Диагональная матрица — такая матрица, у которой все элементы вне главной диагонали равны нулю. Формула расчета диагонали квадрата - дополнить статью...

Теория множеств

По аналогии, подмножество декартового произведения X×X произвольного множества X на само себя, состоящее из пар элементов (x, x), называется диагональю множества. Это — единичное отношение, оно играет важную роль в геометрии: например, константные элементы отображения F с X в X могут быть получены сечением F с диагональю множества X.

Внешние ссылки.



Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Диагональ. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .


Advertisement