Virtual Laboratory Wiki
Advertisement

http://dic.academic.ru/dic.nsf/enc_colier/6344/%D0%A2%D0%9E%D0%9F%D0%9E%D0%9B%D0%9E%D0%93%D0%98%D0%AF

ПОВЕРХНОСТЬ КУБА И СФЕРА гомеоморфны, т.е. могут быть переведены друг в друга топологическим преобразованием, но ни поверхность куба, ни сфера не гомеоморфны тору (поверхности "бублика"). http://dic.academic.ru/dic.nsf/enc_colier/6344/ТОПОЛОГИЯ

Топологическое преобразование, или гомеоморфизм, одной геометрической фигуры S на другую, S', - это отображение (p (r) p') точек p из S в точки p' из S', удовлетворяющее следующим условиям:

1) устанавливаемое им соответствие между точками из S и S' взаимно однозначно, т.е. каждой точке p из S соответствует только одна точка p' из S' и в каждую точку p' отображается только одна точка p;

2) отображение взаимно непрерывно (непрерывно в обе стороны), т.е. если заданы две точки p, q из S и точка p движется так, что расстояние между ней и точкой q стремится к нулю, то расстояние между соответствующими точками p', q' из S' также стремится к нулю, и наоборот.

Геометрические фигуры, переходящие одна в другую при топологических преобразованиях, называются гомеоморфными. Окружность и граница квадрата гомеоморфны, так как их можно перевести друг в друга топологическим преобразованием (т.е. изгибанием и растяжением без разрывов и склеиваний, например, растяжением границы квадрата на описанную вокруг него окружность). Сфера и поверхность куба также гомеоморфны.

Чтобы доказать гомеоморфность фигур, достаточно указать соответствующее преобразование, но тот факт, что для каких-то фигур найти преобразование нам не удается, не доказывает, что эти фигуры не гомеоморфны. Здесь помогают топологические свойства.

Топологическим свойством (или топологическим инвариантом) геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании. Любое открытое связное множество, содержащее по крайней мере одну точку, называется областью. Область, в которой любую замкнутую простую (т.е. гомеоморфную окружности) кривую можно стянуть в точку, оставаясь все время в этой области, называется односвязной, а соответствующее свойство области - односвязностью. Если же некоторую замкнутую простую кривую этой области нельзя стянуть в точку, оставаясь все время в этой области, то область называется многосвязной, а соответствующее свойство области - многосвязностью. Представьте себе две круговые области, или диски, одну без дыр, а другую с дырами. Первая область односвязна, вторая многосвязна. Односвязность и многосвязность - топологические свойства. Область с дырой не может перейти при гомеоморфизме в область без дыр. Интересно отметить, что если в многосвязном диске провести по разрезу от каждой из дыр до края диска, то он станет односвязным. Максимальное число замкнутых простых непересекающихся кривых, по которым можно разрезать замкнутую поверхность, не разделяя ее на отдельные части, называется родом поверхности. Род - топологический инвариант поверхности. Можно доказать, что род сферы равен нулю, род тора (поверхности "бублика") - единице, род кренделя (тора с двумя дырками) - двум, род поверхности с p дырами равен p. Отсюда следует, что ни поверхность куба, ни сфера не гомеоморфны тору. Среди топологических инвариантов поверхности можно также отметить число сторон и число краев. Диск имеет 2 стороны, 1 край и род 0. Тор имеет 2 стороны, не имеет краев, а его род равен 1. Введенные выше понятия позволяют уточнить определение топологии: топологией называется раздел математики, изучающий свойства, которые сохраняются при гомеоморфизмах.


Фоменко

, с.15: Гомеоморфизм \?синоним - конформное отображение\-- взаимно однозначное непрерывное в обе стороны отображение (соответствие). Наглядно Г. можно представить как деформацию объектов, "сделанных из резины". Важное свойство Г.- менять метрические свойства объекта, но сохранять его топологические свойства.

с.144- Человеческая фигура", например, под действием гомеоморфизма может измениться до неузнаваемости, однако сохранит свои основные топологические характеристики.

См. также

\Г. - свойство "гирлянды проблем" (см. ДревоЖеланий\

Гомеоморфизм: топологический и семантический (пример «Инновац. линз»)

Advertisement