Гамма-всплески (ГВ) — масштабные космические энергетические выбросы взрывного характера, наблюдаемые в самой жёсткой части электромагнитного спектра. Предположительно представляют собой сравнительно узкий луч. Открыты в 1968 г. американскими спутниками «Вела», следившими за ядерными взрывами в атмосфере после заключения в 1963 г. Московского договора о запрете ядерных испытаний в трёх средах. Неожиданно, спутники зарегистрировали сигналы, приходившие из космоса, а не со стороны Земли. Эти данные были рассекречены лишь спустя несколько лет (1973). С тех пор уже в течение длительного времени гамма-всплески остаются одной из самых больших загадок астрофизики. Более десяти лет учёные ничего не могли сказать о том, какие процессы могут порождать гамма-всплески, строилось множество разных моделей.
ГВ происходят (вернее, регистрируются) приблизительно раз в день. Как было установлено в советском эксперименте «Конус», который осуществлялся под руководством Е. П. Мазеца на космических аппаратах «Венера — 11, — 12» и «Прогноз» в 70-е годы XX века [1], ГВ с равной вероятностью приходят с любого направления, что, вместе с экспериментально построенной зависимостью Log N — Log S (N — количество ГВ, дающих около Земли поток гамма-излучения больший или равный S), говорило о том, что ГВ имеют космологическую природу (точнее, не связаны с Галактикой или не только с ней, но происходят во всей Вселенной, причём мы их видим с другого конца Вселенной). Направление на источник оценивалось с помощью метода триангуляции.
На сегодняшний день есть два основных подвида ГВ: длинные и короткие, имеющие существенные различия в спектрах и наблюдательных проявлениях. Так, длинные гамма-всплески иногда сопровождаются взрывом сверхновой звезды, а короткие — никогда. Есть и две основные модели, объясняющие эти два типа катаклизмов.
Первая, предложенная американским учёным С.Вусли — модель коллапсара под неудачным названием «неполучившаяся сверхновая» (англ. failed supernova; Woosley 1993). В этой модели гамма-всплеск порождается джетом (струёй) при коллапсе массивной звезды Вольфа-Райе (по существу, гелиевого или углеродно-кислородного ядра нормальной звезды). Эта модель в принципе может описывать длинные (но не слишком длинные) ГВ. Некоторое развитие этой модели было сделано польским учёным Б. Пачиньским, который использовал гораздо более удачный термин «взрыв гиперновой» (англ. hypernova explosion; Paczynski, 1998). Термин «гиперновая» использовался гораздо раньше другими астрофизиками в ином контексте.
Вторая, предложенная советскими астрофизиками С.И. Блинниковым и др. [2] , — слияние двойных нейтронных звёзд. Она подходит для описания коротких ГВ.
Тем не менее процесс исследования ГВ ещё далеко не закончен. Неполной является даже наблюдательная классификация ГВ на длинные и короткие; новые вопросы ждут своего ответа.
История наблюдений гамма-всплесков[]
Открытие гамма-всплесков: спутники Vela[]
Самые значимые ГВ[]
МАТЕРИАЛЫ ПО ТЕМЕ[]
Магнетар[]
С момента фиксации первого гамма-всплеска в 1967 году ведется их список в хронологическом порядке. В него вошли явления, характеристики которых отличаются от стандартных параметров. Обозначение дат ведется: год, месяц, день.
- Поток энергии с наибольшей яркостью среди первых наблюдаемых – GRB 971214.
- Ближайший из замеченных всплесков – GRB 980425.
- Явление, отличающееся особой яркостью, видимое в оптическом и гамма-диапазоне, – GRB 990123.
- Возникший близко к Земле гамма-всплеск с досконально исследованным послесвечением – GRB 030329.
- Первый выброс энергии от сверхновой, снятый с начала появления, – GRB 060218.
- Ярчайшее послесвечение во Вселенной – GRB 080319.
- Гамма-всплеск, произошедший на наибольшем удалении от Солнечной системы из наблюдаемых, – GRB 090423.
- Явление, имевшее наибольшую длительность, составляющую временной интервал до 12 месяцев, – GRB 110328.
Интересные факты: последствия ГВ для Земли[]
Гамма-всплеск, произошедший на расстоянии в несколько миллионов св. лет в пределах нашей Галактики, и направление выброса которого будет направленно на Землю, приведет к частичному или полному исчезновению существующих жизненных форм и видов. С такими катаклизмами ученые связывают массовые вымирания, произошедшие 250 млн. лет назад, – тогда погибло 95% обитавших видов. А еще раньше на 200 млн. лет погибло 60% морских обитателей.+
Прогнозировать время энергетического удара гамма-всплеска невозможно. Но частота появления в Галактике таких явлений измеряется миллионами лет. Так что сегодня нет поводов для беспокойства о нашем будущем.
Гамма-всплески впервые были обнаружены в 1968 году американскими спутниками серии Vela, предназначенными для наблюдения за испытаниями атомного оружия в атмосфере, запрещёнными Московским договором 1963 года.Оказалось, что сигналы приходят из космоса. Открытие было рассекречено и опубликовано только в 1973 году.
Накопление статистики: эпоха BATSE[]
В 1991—2000 годах на борту космической Комптоновской гамма-обсерватории (англ.) работал детектор BATSE (Burst and Transient Source Explorer), предназначенный для регистрации гамма-всплесков. За время его работы было обнаружено 2704 события (то есть примерно по одному всплеску в сутки). Были установлены следующие эмпирические свойства гамма-всплесков: изотропное распределение по небесной сфере, большое разнообразие кривых блеска (плавные и изрезанные на очень малых временных масштабах), бимодальное распределение по длительности (короткие — менее 2 секунд — с более жёстким спектром, и длинные — более 2 секунд — с более мягким спектром). К сожалению, невысокое угловое разрешение (около 1 градуса) не позволяло отождествить гамма-всплески с известными астрономическими объектами.
Открытие послесвечений: эпоха BeppoSax[]
В 1997 году итало-голландский спутник BeppoSax, оборудованный, кроме гамма-детектора, ещё и рентгеновским телескопом, смог наблюдать рентгеновский сигнал в направлении ГВ, значительное время спустя после самого ГВ. Этот сигнал (во всех диапазонах электромагнитного спектра) стали называть "afterglow" ("послесвечение" или "ореол") от гамма-всплесков. Первым таким событием был GRB970228, для которого через 8 часов после всплеска рентгеновский телескоп навёлся на нужную область неба и обнаружил новый, ранее неизвестный слабеющий источник, координаты которого определялись с гораздо большей точностью, чем для гамма-всплеска. Затем наземные оптические телескопы также обнаружили в этом районе слабеющий новый источник, таким образом, его положение стало известно с точностью до секунды. Через некоторое время глубокий снимок Хаббловского телескопа выявил на месте бывшего источника далёкую очень слабую галактику (z=0.7). Таким образом, космологическое происхождение гамма-всплесков было доказано. В дальнейшем послесвечения наблюдались у многих всплесков, во всех диапазонах (рентген, ультрафиолет, оптика, ИК, радио). Красные смещения оказались очень большими (до 6, в основном в диапазоне 0-4 для длинных гамма-всплесков; для коротких — меньше).
Эра быстрого отождествления: SWIFT[]
Запущенный в 2004 году спутник Swift имеет возможность быстрого (менее минуты) оптического и рентгеновского отождествления всплесков. Среди его открытий — мощные, иногда многократные рентгеновские всплески в послесвечениях, через времена до нескольких часов после всплеска; обнаружение послесвечений ещё до окончания собственно гамма-излучения и т.д.
Расстояния и энергетика[]
Из космологической природы гамма-всплесков ясно, что они должны иметь колоссальную энергетику. К примеру, для события GRB970228 в предположении изотропии излучения энергия только в гамма-диапазоне составляет 1.6*1052 эрг, что на порядок больше энергии типичной сверхновой. Для некоторых гамма-всплесков оценка доходит до 1054 эрг, то есть сравнима с энергией покоя Солнца. Причём эта энергия выделяется на очень коротких временах. Достаточно очевидно, что выход энергии происходит в виде коллимированного потока (джета), в этом случае оценка энергии уменьшается пропорционально углу раскрытия конуса джета. Это подтверждается также наблюдениями кривых блеска послесвечений (см. ниже). Типичная энергия всплеска с учётом джетов составляет около 1051 эрг, но разброс всё равно достаточно большой. Наличие джетов означает, что мы видим малую долю всех происходящих во Вселенной всплесков. Оценка их частоты составляет порядка одного всплеска на галактику раз в 105 лет.
События, порождающие гамма-всплески настолько мощные, что иногда их можно наблюдать невооружённым глазом, хотя они происходят на расстоянии в миллиарды световых лет от Земли[3].
Гамма-излучение и центральная машина[]
Механизм, в результате которого за столь короткое время в малом объёме выделяется столько энергии, до сих пор не вполне ясен. Наиболее вероятно, что он различен в случае коротких и длинных гамма-всплесков.
Длинные гамма-всплески и сверхновые[]
Длинные гамма-всплески, вероятно, связаны со сверхновыми Ib/c типа. В нескольких случаях оптически отождествлённый источник через некоторое время после всплеска показывал характерные для сверхновых спектры и кривые блеска. Кроме того, во всех случаях отождествления с галактиками они имели признаки активного звездообразования. Далеко не все сверхновые типа Ib/c могут стать причиной гамма-всплеска. Это события, связанные с коллапсом в чёрную дыру ядра массивной (>25 масс Солнца) звезды, лишённой водородной оболочки, имеющей большой момент вращения — так называемая модель коллапсара. По расчётам, часть ядра превращается в чёрную дыру, окружённую мощным аккреционным диском, который в течение нескольких секунд проваливается в дыру. Одновременно вдоль оси диска запускаются релятивистские джеты, пробивающие оболочку звезды и становящиеся причиной всплеска. Таких случаев должно быть около 1% от общего числа сверхновых (иногда их называют гиперновыми).
Короткие гамма-всплески и слияния релятивистских объектов[]
Механизм коротких гамма-всплесков, возможно, связан со слиянием нейтронных звёзд или нейтронной звезды и чёрной дыры. Из-за большого момента импульса такая система не может сразу целиком превратиться в чёрную дыру: образуется начальная чёрная дыра и аккреционный диск вокруг неё. По расчётам, характерные времена таких событий должны составлять как раз доли секунд. Следует отметить, что отождествлённые короткие гамма-всплески лежат на систематически меньших расстояниях, чем длинные, и имеют меньшее энерговыделение.
Послесвечения: релятивистские джеты[]
В отличие от собственно гамма-всплеска, механизмы послесвечения достаточно хорошо разработаны теоретически. Предполагается, что некоторое событие в центральном объекте инициирует образование ультрарелятивистской разлетающейся оболочки (лоренц-фактор Γ порядка 100). По одной модели, оболочка состоит из барионов (масса её должна составлять 10-8 — 10-6 масс Солнца), по другой — это замагниченное течение, в котором основная энергия переносится вектором Пойнтинга. Весьма существенно, что во многих случаях наблюдается сильная переменность как в самом гамма-излучении (на временах порядка разрешения прибора — миллисекунд), так и в рентгеновских и оптических послесвечениях (вторичные и последующие вспышки, энерговыделение в которых может быть сравнимо с самим всплеском). До некоторой степени это можно объяснить столкновением нескольких ударных волн в оболочке, двигающихся с разными Γ, но в целом это явление представляет серьёзную проблему для любого объяснения механизма работы центральной машины: нужно, чтобы после первого всплеска она могла ещё давать несколько эпизодов энерговыделения, иногда через времена порядка нескольких часов. Послесвечение обеспечивается в основном синхротронным механизмом и, возможно, обратным комптоновским рассеянием. Кривые блеска послесвечений довольно сложны, т.к. они складываются из излучения головной ударной волны, обратной ударной волны, возможного излучения сверхновой и т.д. Иногда на последних стадиях излучения наблюдается излом кривой блеска (от степени -1 до -2), что считается свидетельством в пользу наличия релятивистского джета: излом происходит тогда, когда Γ-фактор падает до значения ~1/θ, где θ — угол раскрытия джета.
Примечания[]
- ↑ Mazets, E.P., Golenetskii, S.V, et al. (1979). "Venera 11 and 12 observations of gamma-ray bursts - The Cone experiment". Soviet Astronomy Letters 5: 87-90.
- ↑ Blinnikov, S., et al. (1984). "Exploding Neutron Stars in Close Binaries". Soviet Astronomy Letters 10: 177.
- ↑ «Самый яркий взрыв Вселенной»
Ссылки[]
- PBS NOVA: Death Star (gamma-ray bursts)
- Animation of Gamma Ray Burst (Quicktime)
- GRB 971214: Most energetic event in the universe
- GRB 971214: Space Science Update Webcast (RealMedia)
- Gamma-ray Burst Real-time Sky Map based on Swift data
- Gamma ray bursters segment of Science Friday, 3 Jun 2005 (RealAudio)
- Gamma-ray burst FAQ from CalTech
- Most distant cosmic blast sighted (BBC reports a registered GRB from about 13 billion light years away)
- Cosmological Gamma-Ray Bursts and Hypernovae Conclusively Linked (ESO)
- Official NASA Swift Homepage: The Swift Gamma-Ray Burst Mission
- M A S T E R Mobile Astronomical System of the Telescope-Robots
Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Гамма-всплеск. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .