Advertisement

Вынужденное излучение

Электромагнитное излучение
Синхротронное
Циклотронное
Тормозное
Равновесное
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Вынужденное
Файл:Absorption of Photon ru.svg

Рис. 1a. Поглощение фотона.

Файл:Stimulated Emission ru.svg

Рис. 1б. Вынужденное испускание фотона.

Файл:Spontaneous Emission ru.svg

Рис. 1в. Спонтанное испускание фотона.

Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней. Созданный фотон имеет те же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными.

Введение. Теория Эйнштейна

Большой вклад в разработку вопроса о вынужденном излучении (испускании) внес А. Эйнштейн. Гипотеза Эйнштейна состоит в том, что под действием электромагнитного поля частоты ω молекула (атом) может:

  • перейти с более низкого энергетического уровня на более высокий с поглощением фотона энергией (см. рис. 1a);
  • перейти с более высокого энергетического уровня на более низкий с испусканием фотона энергией (см. рис. 1б);
  • кроме того, как и в отсутствие возбуждающего поля, остаётся возможным самопроизвольный переход молекулы (атома) с верхнего на нижний уровень с испусканием фотона энергией (см. рис. 1в).

Первый процесс принято называть поглощением, второй — вынужденным (индуцированным) испусканием, третий — спонтанным испусканием. Скорость поглощения и вынужденного испускания фотона пропорциональна вероятности соответствующего перехода: и где — коэффициенты Эйнштейна для поглощения и испускания, спектральная плотность излучения.

Число переходов с поглощением света выражается как

с испусканием света даётся выражением:

где — коэффициент Эйнштейна, характеризующий вероятность спонтанного излучения, а — число частиц в первом или во втором состоянии соответственно. Согласно принципу детального равновесия, при термодинамическом равновесии число квантов света при переходах должно равняться числу квантов испущенных в обратных переходах

Между коэффициентами Эйнштейна существует связь, которую мы сейчас найдем.

Связь между коэффициентами

Рассмотрим замкнутую полость, стенки которой испускают и поглощают электромагнитное излучение. Такое излучение характеризуется спектральной плотностью получаемой из формулы Планка:

Так как мы рассматриваем термодинамическое равновесие, то Используя уравнения (2) и (3), находим для состояния равновесия:

откуда:

При термодинамическом равновесии распределение частиц по уровням энергии подчиняется закону Больцмана:

где и статистические веса уровней, показывающие количество независимых состояний квантовой системы, имеющих одну и ту же энергию (вырожденных). Будем считать для простоты, что статвеса уровней равны единице.

Итак, сравнивая (4) и (5) и принимая во внимание, что получим:

Так как при спектральная плотность излучения должна неограниченно возрастать, то нам следует положить знаменатель равным нулю, откуда имеем:

Далее, сопоставив (3) и (6), легко получить:

Последние два соотношения справедливы для любых комбинаций уровней энергии. Их справедливость сохраняется и при отстутствии равновесия, так как определяются только характеристикой систем и не зависят от температуры.

Свойства вынужденного испускания

По свойствам вынужденное испускание существенно отличается от спонтанного.

  • Наиболее характерная черта вынужденного излучения заключается в том, что возникший поток распространяется в том же направлении что и первоначальный возбуждающий поток.
  • Частоты и поляризация вынужденного и первоначального излучений также равны.
  • Вынужденный поток когерентен возбуждающему.

Применение

На вынужденном излучении основан принцип работы лазеров и мазеров. В рабочем теле лазера путём накачки создаётся избыточное (по сравнению с термодинамическим ожиданием) количество атомов в верхнем энергетическом состоянии. Рабочее тело газового лазера находится в резонаторе (в простейшем случае — пара зеркал), создающем условия для накапливания фотонов с определённым направлением импульса. Первоначальные фотоны возникают за счёт спонтанного излучения, затем их поток лавинообразно усиливается благодаря вынужденному излучению. Лазеры обычно используются для генерации излучения, тогда как мазеры, работающие в области радиочастот, применяются также и для усиления.

Последние открытия

Британские ученые смогли замедлить испускание фотона при помощи "побочных продуктов", остающихся при изготовлении квантовых точек. Статья опубликована в журнале Physical Review Letters. Ее основные положения приведены в пресс-релизе Университета Ворвика, сотрудники которого принимали участие в исследовании.

В своей работе физики "замедляли" свет, продлевая время жизни экситона. Экситон представляет собой квазичастицу, возникающую при выбивании электрона фотоном с его энергетического уровня на более высокий (говорят, что электрон переходит в возбужденное состояние). Электрон и образовавшаяся на его месте "дырка" оказываются связаны друг с другом посредством зарядовых взаимодействий. Когда электрон возвращается на прежний энергетический уровень, он занимает место "дырки", а выбивший его фотон испускается системой.

Экситоны могут иметь различную природу. В частности, пару электрон-"дырка" может содержать кольцеобразный фрагмент материала, образовавшийся при производстве квантовых точек - изолированных нанообъектов, свойства которых заметно отличаются от свойств более крупных кусков такого же состава.

Авторы работы показали, что воздействие на такой квантовый бублик определенной комбинацией электрических и магнитных полей способно существенно замедлить скорость возвращения электрона на место "дырки" и испускания фотона.

Авторы работы считают, что у разработанной ими технологии большое будущее. Например, задержка испускания света может помочь в создании компьютеров, в которых фотоны используются для передачи информации.

См. также

  • Лазер
  • Мазер
  • Квантовый генератор

Литература

А. Л. Микаэлян, М. Л. Тер-Микаелян Ю. Г. Турков. «Оптические генераторы на твёрдом теле». М.: Советское радио, 1967.

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.